
ELP/MPP02 Lunar Ephemeris

Yuk Tung Liu

2018-08-14

ELP/MPP02 is a semi-analytic solution for the lunar motion developed by J. Chapront and
G. Francou in 2002. It is an improvement of the ELP2000-82B lunar theory. The major paper
about the ELP/MPP02 theory is The lunar theory ELP revisited. Introduction of new planetary
perturbations by J. Chapront and G. Francou, Astronomy and Astrophysics, v.404, p.735-742
(2003), which you can also find references to the ELP2000-82B theory. The authors provide data
files, a FORTRAN code and a pdf documentation on this ftp site. ELP/MPP02 theory provides
two sets of parameters adjusted to fit either the lunar laser ranging (LLR) observation data or
JPL’s DE405/DE406 ephemerides.

I have written C++ functions to compute the lunar positions based on the information on
that ftp site. The full ELP/MPP02 theory contains series involving 35901 terms. High accuracy
of lunar positions may not be necessary for some applications. It is therefore useful to create a
truncated series to speed up computation. I have written routines that create a truncated series
using 4 parameters. I also wrote a function to estimate the accuracy of the truncated series.

JavaScript is convenient for HTML-based applications, such as my local star charts and equa-
torial star charts pages. I wrote C++ routines that generate JavaScript functions to compute a
truncated ELP/MPP02 series.

This document describes my implementation of the ELP/MPP02 series, the creation of a
truncated series, and the estimation of the accuracy of the truncated series. I do not explain the
ELP/MPP02 theory in this document. Readers who are interested in the theory can read the
paper and the pdf document on the ftp site mentioned above.

1 Implementation of ELP/MPP02

The equations for computing the ELP/MPP02 are given in the pdf document on this ftp site. In
this section, I rewrite the equations in a form that is more convenient for code development.

1.1 Parameters Adjusted to Fit LLR or DE405/DE406

The following are values of the parameters adjusted to fit LLR or DE405/DE406. I use the same
notation as in the pdf document on this ftp site.

1

https://publish.illinois.edu/ytliu/
https://ui.adsabs.harvard.edu/abs/2003A%26A...404..735C/abstract
https://ui.adsabs.harvard.edu/abs/2003A%26A...404..735C/abstract
ftp://cyrano-se.obspm.fr/pub/2_lunar_solutions/2_elpmpp02/
https://ytliu0.github.io/starCharts/
https://ytliu0.github.io/starCharts/chartGCRS_min.html
https://ytliu0.github.io/starCharts/chartGCRS_min.html
ftp://cyrano-se.obspm.fr/pub/2_lunar_solutions/2_elpmpp02/
ftp://cyrano-se.obspm.fr/pub/2_lunar_solutions/2_elpmpp02/

Variable Name in the code LLR DE405/DE406

∆W
(0)
1 Dw1 0 −0.10525′′ −0.07008′′

∆W
(0)
2 Dw2 0 +0.16826′′ +0.20794′′

∆W
(0)
3 Dw3 0 −0.10760′′ −0.07215′′

∆W
(1)
1 Dw1 1 −0.32311′′/cy −0.35106′′/cy

∆W
(1)
2 Dw2 1 +0.08017′′/cy +0.08017′′/cy

∆W
(1)
3 Dw3 1 −0.04317′′/cy −0.04317′′/cy

∆W
(2)
1 Dw1 2 −0.03794′′/cy2 −0.03743′′/cy2

∆Γ Dgam +0.00069′′ +0.00085′′

∆E De +0.00005′′ −0.00006′′

∆T (0) Deart 0 −0.04012′′ −0.00033′′

∆T (1) Deart 1 +0.01442′′/cy +0.00732′′/cy
∆$

′(0) Dperi −0.04854′′ −0.00749′′

∆e′ Dep +0.00226′′ +0.00224′′

∆W
(3)
1 Dw1 3 0 −0.00018865′′/cy3

∆W
(4)
1 Dw1 4 0 −0.00001024′′/cy4

∆W
(2)
2 Dw2 2 0 +0.00470602′′/cy2

∆W
(3)
2 Dw2 3 0 −0.00025213′′/cy3

∆W
(2)
3 Dw3 2 0 −0.00261070′′/cy2

∆W
(3)
3 Dw3 3 0 −0.00010712′′/cy3

Here cy denotes Julian century. Note that the last 6 variables in the DE405/DE406 column
are used to make ELP/MPP02 approaches closely the JPL Ephemeris DE406 on a long range (a
few seconds over 6 millennia), whereas the rest are fitted to DE405 only.

There are 8 more parameters needed. To calculate them, the following constants are calculated
first.

j B′2,j B′3,j
1 0.311079095 -0.103837907
2 -0.004482398 0.000668287
3 -0.001102485 -0.001298072
4 0.001056062 -0.000178028
5 0.000050928 -0.000037342

m = n′/ν = 0.074801329,
α = a0/a

′ = 0.002571881,

W
(1)
1 = 1732559343.73604′′/cy + ∆W

(1)
1 ,

W
(1)
2 = 14643420.3171′′/cy + ∆W

(1)
2 ,

W
(1)
3 = −6967919.5383′′/cy + ∆W

(1)
3 ,

δν = 0.55604′′/cy + ∆W
(1)
1 ,

δΓ = −0.08066′′ + ∆Γ,
δE = 0.01789′′ + ∆E,
δe′ = −0.12879′′ + ∆e′,
δn′ = −0.0642′′/cy + ∆T (1).

2

The following are the equations for the 8 remaining parameters.

δW
(1)
2 =

W (1)
2

W
(1)
1

−m
(
B′2,1 +

2α

3m
B′2,5

)∆W
(1)
1 +

(
B′2,1 +

2α

3m
B′2,5

)
∆T (1)

+W
(1)
1 (B′2,2∆Γ +B′2,3∆E +B′2,4∆e

′)

δW
(1)
3 =

W (1)
3

W
(1)
1

−m
(
B′3,1 +

2α

3m
B′3,5

)∆W
(1)
1 +

(
B′3,1 +

2α

3m
B′3,5

)
∆T (1)

+W
(1)
1 (B′3,2∆Γ +B′3,3∆E +B′3,4∆e

′)

fA = 1− 2δν

3W
(1)
1

fB1 =
δn′ −mδν
W

(1)
1

fB2 = δΓ (in radians)
fB3 = δE (in radians)
fB4 = δe′ (in radians)

fB5 =
2α

3mW
(1)
1

(δn′ −mδν).

The first 21 parameters ∆W
(0)
1 , ∆W

(0)
2 , ∆W

(0)
3 , ∆W

(1)
1 , ∆W

(1)
2 , ∆W

(1)
3 , ∆W

(2)
1 , ∆Γ, ∆E,

∆T (0), ∆T (1), ∆$′(0), ∆e′, ∆W
(3)
1 , ∆W

(4)
1 , ∆W

(2)
2 , ∆W

(3)
2 , ∆W

(2)
3 , ∆W

(3)
3 , δW

(1)
2 , and δW

(1)
3 are

grouped together in the struct Elp paras in the C++ file ElpMpp02.h. The last 6 parameters
fA, fB1, fB2, fB3, fB4, and fB5 are grouped in the struct Elp facs in ElpMpp02.h. These 27
parameters are fixed once LLR or DE405/DE406 are specified. They only need to be computed
once.

These parameters are calculated in the subroutine
setup parameters(int corr, Elp paras ¶s, Elp facs &facs)

Parameters fitted to LLR are computed if corr is 0 and parameters fitted to DE405/DE406 are
computed if corr is 1. These groupings are convenient if one wants to construct other sets of
parameters fitted to other data (e.g. DE431).

1.2 Coefficients of the ELP/MPP02 Series

The coefficients are stored in the 14 data files:
elp main.long, elp main.lat, elp main.dist,
elp pert.longT0, elp pert.longT1, elp pert.longT2, elp pert.longT3,
elp pert.latT0, elp pert.latT1, elp pert.latT2,
elp pert.distT0, elp pert.distT1, elp pert.distT2, elp pert.distT3.
They are constructed from the data files on this ftp site and put in a format more convenient

for C++ implementation. In each file, the first line is an integer indicating the number of terms
in the series.

The first three files elp main.long, elp main.lat, and elp main.dist are the Fourier series
of the longitude, latitude and distance. They contain 11 columns containing

{i1, i2, i3, i4, A,B1, B2, B3, B4, B5, B6}.

3

ftp://cyrano-se.obspm.fr/pub/2_lunar_solutions/2_elpmpp02/

The series is calculated by the equation

∑
{i}
Ã{i}

{
sin
cos

}
(i1D + i2F + i3l + i4l

′) {i} = {i1, i2, i3, i4}. (1)

Longitude and latitude are sine series and distance is cosine series. The 4 variables D, F , l and
l′ are the Delaunay arguments (see the next subsection). The coefficients Ã{i} are calculated
according to

Ã{i} =

A{i} +

5∑
j=1

fBjBj{i} for longitude and latitude

fAA{i} +
5∑

j=1
fBjBj{i} for distance

, (2)

where fA and fBj (j = 1, 2, 3, 4, 5) are the paremeters described in the previous subsection. They
are grouped together in the struct Elp facs in ElpMpp02.h. Note that B6{i} are not used in the
calculation. In addition, the amplitudes A{i} for longitude and latitude are in arcseconds in the
original data files. I converted them to radians in the files elp main.long and elp main.lat.

The remaining 11 files contain the Poisson series for perturbations. Each file has 15 columns
containing i1, i2, ..., i13, A and φ0. The series is summed according to the equation∑

{i}
A{i} sinφ {i} = {i1, i2, ..., i13}, (3)

The phase φ is given by

φ = φ0+i1D+i2F+i3l+i4l
′+i5Me+i6V e+i7EM+i8Ma+i9Ju+i10Sa+i11Ur+i12Ne+i13ζ, (4)

where the 13 arguments D, F , ... will be described in the next subsection. In the longitude and
latitude files, the amplitudes A{i} are in radians/cyn. In all perturbation files, The initial phase
φ0{i} are in radians.

The amplitudes Ã{i} in the main problem are fixed once the adjustable parameters fitted to
LLR or DE405/DE406 are determined. The amplitudes A{i} in the Poisson series for perturbations
are the same for the LLR and DE405/DE406 parameters. Hence, all coefficients are determined
once LLR or DE405/DE406 are specified. The coefficients are calculated after the parameters
in the previous subsection are calculated. They are grouped together in the struct Elp coefs in
ElpMpp02.h.

The coefficients are calculated in the subroutine
setup Elp coefs(Elp coefs &coefs, Elp facs facs)

1.3 Lunar and Planetary Arguments

The Moon and Earth-Moon arguments are given by

W1 = (218◦18′59.95571′′ + ∆W
(0)
1) + (1732559343.73604′′/cy + ∆W

(1)
1)T

+(−6.8084′′/cy2 + ∆W
(2)
1)T 2 + (0.006604′′/cy3 + ∆W

(3)
1)T 3

+(−0.00003169′′/cy4 + ∆W
(4)
1)T 4 (5)

W2 = (83◦21′11.67475′′ + ∆W
(0)
2) + (14643420.3171′′/cy + ∆W

(1)
2 + δW

(1)
2)T

4

+(−38.2631′′/cy2 + ∆W
(2)
2)T 2 + (−0.045047′′/cy3 + ∆W

(3)
2)T 3

+(0.00021301′′/cy4)T 4 (6)

W3 = (125◦2′40.39816′′ + ∆W
(0)
3) + (−6967919.5383′′/cy + ∆W

(1)
3 + δW

(1)
3)T

+(6.359′′/cy2 + ∆W
(2)
3)T 2 + (0.007625′′/cy3 + ∆W

(3)
3)T 3

+(−0.00003586′′/cy4)T 4 (7)

Ea = (100◦27′59.13885′′ + ∆T (0)) + (129597742.293′′/cy + ∆T (1))T
+(−0.0202′′/cy2)T 2 + (9′′ × 10−6/cy3)T 3

+(1.5′′ × 10−7/cy4)T 4 (8)

$′ = (102◦56′14.45766′′ + ∆$′(0)) + (1161.24342′′/cy)T + (0.529265′′/cy2)T 2

−(1.1814′′ × 10−4/cy3)T 3 + (1.1379′′ × 10−5/cy4)T 4, (9)

where T = (JD − 2451545)/36525 is the barycentric dynamical time (TDB) in Julian centuries
from J2000.0

Delaunay arguments D, F , l and l′ are given by

D = W1 − Ea+ 180◦ (10)

F = W1 −W3 (11)

l = W1 −W2 (12)

l′ = Ea−$′. (13)

These are the 4 arguments appearing in the ELP/MPP02 series for the main problem, and also
the first 4 arguments appearing in the ELP/MPP02 series for perturbations. The remaining 9
arguments in the ELP/MPP02 series for perturbations are given by

Me = 252◦15′3.216919′′ + (538101628.66888′′/cy)T (14)

V e = 181◦58′44.758419′′ + (210664136.45777′′/cy)T (15)

EM = 100◦27′59.13885′′ + (129597742.293′′/cy)T (16)

Ma = 355◦26′3.642778′′ + (68905077.65936′′/cy)T (17)

Ju = 34◦21′5.379392′′ + (10925660.57335′′/cy)T (18)

Sa = 50◦4′38.902495′′ + (4399609.33632′′/cy)T (19)

Ur = 314◦3′4.354234′′ + (1542482.57845′′/cy)T (20)

Ne = 304◦20′56.808371′′ + (786547.897′′/cy)T (21)

ζ = W1 + (5028.79695′′/cy)T. (22)

These 13 arguments are grouped together in the struct Elp args in ElpMpp02.h. They are
calculated in the subroutine
compute Elp arguments(double T, Elp paras paras, Elp args &args)

1.4 Position of the Moon

The natural coordinate system in ELP/MPP02 theory is based on the mean ecliptic of date. In
this coordinate system, the geocentric ecliptic longitude V , latitude U and distance r of the Moon
are given by

V = W1 + series(elp main.long) + series(elp pert.longT0) + series(elp pert.longT1) · T

5

+series(elp pert.longT2) · T 2 + series(elp pert.longT3) · T 3 (23)

U = series(elp main.lat) + series(elp pert.latT0) + series(elp pert.latT1) · T
+series(elp pert.latT2) · T 2 (24)

r = ra0 · [series(elp main.dist) + series(elp pert.distT0) + series(elp pert.distT1) · T
+series(elp pert.distT2) · T 2 + series(elp pert.distT3) · T 3], (25)

where ra0 = a0(DE405)/a0(ELP) = 384747.961370173/384747.980674318. The rectrangular coor-
dinates X, Y , Z with respect to the mean ecliptic and equinox of J2000.0 are given by X

Y
Z

 =

 1− 2P 2 2PQ 2P
√

1− P 2 −Q2

2PQ 1− 2Q2 −2Q
√

1− P 2 −Q2

−2P
√

1− P 2 −Q2 2Q
√

1− P 2 −Q2 1− 2P 2 − 2Q2

 r cosV cosU
r sinV cosU
r sinU

 ,
(26)

where

P = 0.10180391× 10−4T + 0.47020439× 10−6T 2 − 0.5417367× 10−9T 3

−0.2507948× 10−11T 4 + 0.463486× 10−14T 5 (27)

Q = −0.113469002× 10−3T + 0.12372674× 10−6T 2 + 0.1265417× 10−8T 3

−0.1371808× 10−11T 4 − 0.320334× 10−14T 5. (28)

Rectangular coordinates X, Y and Z are computed in ElpMpp02.h in the subroutine
getX2000(double T, Elp paras ¶s, Elp coefs &coefs, double &X, double &Y, double

&Z)

1.5 Test Cases

Test cases are provided in the pdf document on this ftp site. Here I provide another sets of cases
for code test.

Lunar geocentric rectangular coordinates (ecliptic and equinox of J2000.0) using parameters
fitted to LLR.

TDB JD
TDB Date, Time

(YYYY-MM-DD, HH:MM:SS)
X (km) Y (km) Z (km)

2444269.5 1980-01-31, 00:00:00 -186813.01288 349310.13512 -19003.33883
2446269.7 1985-07-23, 04:48:00 -367970.07950 -45234.88375 20221.87153
2448269.9 1991-01-13, 09:36:00 -38942.82455 -403238.94206 -20800.77410
2450270.1 1996-07-05, 14:24:00 357372.04971 -89978.49535 14501.18831
2452270.3 2001-12-26, 19:12:00 252208.00739 294433.40162 -21940.36333

Lunar geocentric rectangular coordinates (ecliptic and equinox of J2000.0) using parameters
fitted to DE405/DE406.

TDB JD
TDB Date, Time

(YYYY-MM-DD, HH:MM:SS)
X (km) Y (km) Z (km)

2521835.67 2192-06-13, 04:04:48 -184108.21468 345893.25529 30395.06868
2265621.33 1490-12-07, 19:55:12 -298024.37832 -213909.67132 -23263.21426
2009406.99 0789-06-16, 11:45:36 350041.24745 -201093.28987 1643.33539
1753192.65 0087-12-25, 03:36:00 90272.39894 351997.39617 13417.01712
1496978.31 -0614-07-03, 19:26:24 -403018.01560 -2639.93889 -28463.89733

6

ftp://cyrano-se.obspm.fr/pub/2_lunar_solutions/2_elpmpp02/

More test cases can be generated by modifying the C++ code example.cpp or using this
JavaScript calculator.

2 Truncated ELP/MPP02 Series

2.1 Implementation

The ELP/MPP02 series can be written in the form

V (T) = W1(T) +
3∑

i=0

T i
∑
j

A
(V)
ij sin

[
φ
(V)
ij (T)

]
(29)

U(T) =
2∑

i=0

T i
∑
j

A
(U)
ij sin

[
φ
(U)
ij (T)

]
(30)

r(T) =
3∑

i=0

T i
∑
j

A
(r)
ij sin

[
φ
(r)
ij (T)

]
, (31)

where A
(U)
ij , A

(V)
ij , A

(r)
ij are constant amplitudes once the adjustable parameters are chosen. The

phase angles φ
(U)
ij , φ

(V)
ij , φ

(r)
ij are linear functions of 13 arguments (see Section 1.2).

I construct a truncated series by the following procedure:

� Choose four parameters A
(U)
th , A

(V)
th , A

(r)
th and τ .

� Drop the terms in the series with A
(U)
ij < A

(U)
th /τ

i, A
(V)
ij < A

(V)
th /τ i, and A

(r)
ij < A

(r)
th /τ

i.

It is clear that the smaller the parameters A
(U)
th , A

(V)
th , and A

(r)
th , the closer the truncated series

is to the original series. The parameter τ has a unit of time and should be chosen to cover the
time span of interest.

The truncation is implemented in the file ElpMpp trim.h by the subroutine
trim Elp coefs(Elp coefs &coefs, Elp coefs &coefs trim, double AthU, double AthV, double

AthR, double tau)

where coefs is a struct containing the coefficients of the full series. Coefficients of the truncated
series will be written to the struct coefs trim. This new struct can be passed to the function
getX2000() to compute the Moon’s position using the truncated series.

2.2 Accuracy of Truncated Series

One simple way to estimate the accuracy of a truncated series is to calculate the sum of the
absolute value of the amplitudes of the dropped terms. This gives the maximum deviation the
truncated series could be from the full series. Suppose the truncated series is to be used in the
time span T1 < T < T2, the maximum possible deviations between the full and truncated series
are

∆Vmax =
3∑

i=0

T i
max

∑
dropped A

(V)
ij

|A(V)
ij | (32)

7

https://github.com/ytliu0/ElpMpp02/ElpMpp02.html

∆Umax =
2∑

i=0

T i
max

∑
dropped A

(U)
ij

|A(U)
ij | (33)

∆rmax =
3∑

i=0

T i
max

∑
dropped A

(r)
ij

|A(r)
ij |, (34)

where Tmax = max(|T1|, |T2|). These estimated deviations are very conservative because in general
the phases in the terms are different and the terms do not have the same sign. Root mean square
deviations may provide better estimates of typical deviations at any given time between T1 and
T2:

rms(∆q) =
√
〈∆q2(T)〉 =

√√√√√
〈

3∑
i=0

3∑
j=0

T i+j
∑

dropped A
(q)
ik

∑
dropped A

(q)
jm

A
(q)
ik A

(q)
jm sinφ

(q)
ik (T) sinφ

(q)
jm(T)

〉
,

(35)
where q = U, V, r and 〈〉 denotes time average. Assume that the time average of the cross terms
are small, which might not be true, the expression may be simplified to

rms(∆q) ≈

√√√√√ 3∑
i=0

T 2i+1
2 − T 2i+1

1

2(2i+ 1)(T2 − T1)
∑

dropped A
(q)
ij

(
A

(q)
ij

)2
, (36)

where I have used the approximation that

〈
T 2i sin2 φ

(q)
ij

〉
≈
〈
T 2i

〉 〈
sin2 φ

(q)
ij (T)

〉
≈ T 2i+1

2 − T 2i+1
1

2(2i+ 1)(T2 − T1)
. (37)

The validity of this approximation is also uncertain. There is also an implicit assumption that any
time between T1 and T2 is equally likely to be chosen. Whether or not this assumption is valid
depends on specific applications. For example, one may want to use a truncated series to calculate
lunar positions between 1900 and 2100 (T1 = −1, T2 = 1) most of the time, but occasionally may
want to calculate the positions in ancient times. If this is the case, one should choose multiple
pairs of (T1, T2) and estimate the accuracy of the truncated series in those time intervals.

A more reliable way of estimating the accuracy is to perform a Monte Carlo simulation, in
which values of V , U , r are calculated from both the full series and truncated series at n randomly
chosen times between T1 and T2. The deviations are then estimated according to the equations

∆qmax ≈ max(|∆q1|, |∆q2|, · · · , |∆qn|) (38)

rms(∆q) ≈

√√√√ 1

n

n∑
i=0

(∆qi)2, (39)

where

∆qi = qfull series(Ti)− qtruncated series(Ti) =
3∑

k=0

T k
i

∑
dropped A

(q)
kj

A
(q)
kj sinφ

(q)
kj (Ti). (40)

The crude error estimates from equations (32), (33), (34) and (36) are implemented in ElpMpp trim.h

in subroutine
trim Elp coefs errorEst(Elp coefs &coefs, Elp coefs &coefs trim, Elp coefs &coefs drop,

8

double AthU, double AthV, double AthR, double tau, double T1, double T2, devStats

&stats)

where coefs drop stores the dropped coefficients and devStats is a struct grouping the variables
for ∆qmax and rms(∆q).

The error estimate based on a Monte Carlo (MC) simulation is implemented in ElpMpp trim.h

in subroutine
error est(Elp coefs &coefs drop, Elp paras ¶s, int n, double T1, double T2, devStats

&errStats)

I set n = 10000 for a typical run to obtain decent statistics. It may take a while to complete
the simulation, depending on your processor speed. I use the rand() function in <cstdlib> to
generate random numbers. In my Linux g++ compiler, rand() generates pseudo random integers
between 0 and 2147483647. A seed is currently set using srand(4852618) in the code to ensure
reproducibility. It is not clear to me that rand()/2147483647 will produce random numbers
uniformly distributed between 0 and 1, but the result I get from using rand() seems to agree with
that obtained from pseudo random numbers generated by R’s runif() function, which generates
pseudo random numbers uniformly distributed between 0 and 1.

The following are examples of error estimates computed from the two subroutines.

In all cases, τ = 50, T1 = −50, T2 = 10 and parameters fitted to DE405/DE406 are used. N is
the number of terms in the truncated ELP/MPP02 series. ∆qmax and rms(∆q) (q = V, U, r) are
computed from equations (32), (33), (34) and (36).

A
(U)
th A

(V)
th A

(r)
th N ∆Vmax rms(∆V) ∆Umax rms(∆U) ∆rmax rms(∆r)

30′′ 30′′ 100 km 42 422′′ 45.4′′ 209′′ 32.5′′ 462 km 84.0 km
10′′ 10′′ 20 km 69 242′′ 20.5′′ 137′′ 17.6′′ 282 km 30.5 km
1′′ 1′′ 2 km 187 74′′ 2.95′′ 38.6′′ 3.34′′ 60.2 km 3.96 km

0.001′′ 0.001′′ 0.1 km 3759 1.47′′ 0.016′′ 0.80′′ 0.015′′ 16.3 km 0.42 km

Same as above, but ∆qmax and rms(∆q) are estimated by Monte Carlo simulations using
equations (38) and (39) with n = 10000. All ∆qmax and rms(∆q) are rounded to two significant
figures, which is about the accuracy of the estimates using n = 10000.

A
(U)
th A

(V)
th A

(r)
th N ∆Vmax rms(∆V) ∆Umax rms(∆U) ∆rmax rms(∆r)

30′′ 30′′ 100 km 42 230′′ 48′′ 150′′ 34′′ 340 km 86 km
10′′ 10′′ 20 km 69 100′′ 21′′ 98′′ 19′′ 150 km 31 km
1′′ 1′′ 2 km 187 17′′ 3.0′′ 18′′ 2.4′′ 17 km 4.3 km

0.001′′ 0.001′′ 0.1 km 3759 0.093′′ 0.016′′ 0.058′′ 0.012′′ 2.0 km 0.42 km

Not surprisingly, ∆qmax calculated by (32), (33), (34) are always larger than those estimated
by MC, but the estimates for rms(∆q) by both methods turn out to be quite close for the cases
considered.

Note that the accuracy is estimated by comparing the truncated series to the full series. One
might want to compare the truncated series to other data such as JPL’s ephemerides. The Monte
Carlo subroutine can be modified to make that comparison. In the following, I show results
of comparison between the truncated series and JPL’s DE406 and DE431 in the time intervals
−50 < T < 10.

In all cases, τ = 50, T1 = −50, T2 = 10 and parameters fitted to DE405/DE406 are used. The

9

series is now compared to JPL’s DE406 using Monte Carlo method with n = 10000. The case
with A

(U)
th = A

(V)
th = A

(r)
th = 0 is the untruncated series.

A
(U)
th A

(V)
th A

(r)
th N ∆Vmax rms(∆V) ∆Umax rms(∆U) ∆rmax rms(∆r)

30′′ 30′′ 100 km 42 230′′ 47′′ 150′′ 34′′ 370 km 86 km
10′′ 10′′ 20 km 69 97′′ 21′′ 100′′ 19′′ 150 km 31 km
1′′ 1′′ 2 km 187 15′′ 2.9′′ 14′′ 2.4′′ 17 km 4.3 km

0.001′′ 0.001′′ 0.1 km 3759 3.5′′ 0.56′′ 0.59′′ 0.10′′ 2.6 km 0.46 km
0 0 0 35901 3.5′′ 0.56′′ 0.59′′ 0.10′′ 1.3 km 0.19 km

Same as the previous table but the comparison is to JPL’s DE431.

A
(U)
th A

(V)
th A

(r)
th N ∆Vmax rms(∆V) ∆Umax rms(∆U) ∆rmax rms(∆r)

30′′ 30′′ 100 km 42 240′′ 48′′ 150′′ 34′′ 340 km 86 km
10′′ 10′′ 20 km 69 100′′ 21′′ 99′′ 19′′ 150 km 31 km
1′′ 1′′ 2 km 187 19′′ 3.7′′ 18′′ 2.4′′ 17 km 4.3 km

0.001′′ 0.001′′ 0.1 km 3759 12.5′′ 2.5′′ 1.5′′ 0.33′′ 3.4 km 0.53 km
0 0 0 35901 12.5′′ 2.5′′ 1.5′′ 0.33′′ 2.6 km 0.33 km

2.3 Saving the Truncated Series

If you are happy with the truncated series, you may want to save the coefficients of the trun-
cated series so that you don’t have to recalculate them every time. A subroutine is provided in
ElpMpp trim.h to output the coefficients to 14 data files:
output data files(const char *dataFileSuffix, Elp coefs &coefs)

where coefs is the struct that stores the truncated coefficients. All file names have the form
elp MMMM.[X]dataFileSuffix, where MMMM is main or pert, [X] can be long, lat, dist, longT0,
longT1, longT2, longT3, latT0, latT1, latT2, distT0, distT1, distT2, distT3. dataFileSuffix

contains characters appended to the file name. It provides a shorthand notation for the truncated
series.

The format of the 14 files are almost the same as before. The first line is an integer indicating
the number of terms in the series. The three files for the main problem each has 5 columns
containing i1, i2, i3, i4 and Ã. There is no need to calculate Ã from A and Bi since parameters
have been chosen to fit either LLR or DE405/DE406 when constructing the truncated series. The
remaining 11 files for perturbations are the same as before: 15 columns containing i1, i2, ..., i13,
A and φ0.

ElpMpp trim.h also has a subroutine that generates a C++ code to compute the truncated
series based on the 14 data files created by output data files(). The subroutine is
generate cpp code(const char* outfile, const char *dataFileSuffix, int corr, double

AthU, double AthV, double AthR, double tau, Elp paras ¶s)

The file name of the C++ code is given by the character array outfile.
The file example usingElpMpp trim.cpp provides an example of using ElpMpp trim.h to gen-

erate a truncated ELP/MPP02 series, estimate its accuracy, save coefficients to data files and
create a C++ code.

10

3 JavaScript Code Generation

JavaScript is convenient for HTML-based applications, such as my local star charts and equatorial
star charts pages. The file ElpMpp JavaScript.h contains C++ subroutines that can generate
JavaScript functions to compute a truncated ELP/MPP02 series. Instruction for the use of this
code is at the beginning of the file. The two main subroutines are
generate javascript code(const char* outfile, int corr, double AthU, double AthV, double

AthR, double tau, Elp paras ¶s, Elp coefs &coefs, const char* funSuffix)

and
generate javascript code min(const char* outfile, int corr, double AthU, double AthV,

double AthR, double tau, Elp paras ¶s, Elp coefs &coefs, const char *funSuffix)

outfile is file name of the js file that will be outputted. Characters in funSuffix will be
added to every JavaScript function. This is useful to prevent conflicts with code that imple-
ments other versions of the truncated series. The subroutine generate javascript code()

generates a human-readable js file. It is intended for your reference only. The subroutine
generate javascript code min() generates a minified version of the js file, in which comments
and unnecessary white spaces are stripped to optimize performance. The js files generated by the
two subroutines provide identical functions.

Unlike the C++ code generator, no data files will be outputted. The ELP/MPP02 series
are written expliticly in the outputted js file instead of using loops. JavaScript is an interpreted
language, not a compiled language. So it cannot take advantage of any loop parallization that may
be available through compilers. In addition, in the computation of phases such as in equation (4),
many of the i’s are zeros. When writing out the series explicitly, all the zero i’s are removed to
speed up computation. In fact, writing out the series explicitly may also benefit a C++ code,
especially when the truncated series contains less than 1000 terms. The subroutines above can be
modified easily to turn into a C++ code generator.

This JavaScript calculator uses two js files ElpMpp02LLR min.js and ElpMpp02DE min.js to
compute the ELP/MPP02 series. They are minified Javascript files generated using subroutines

in ElpMpp JavaScript.h by setting A
(V)
th = A

(U)
th = A

(r)
th = 0 and using parameters fitted to LLR

and DE405/DE406.
The C++ file example usingElpMpp JavaScript.cpp provides an example of using

ElpMpp JavaScript.h to generate JavaScript functions to compute a truncated ELP/MPP02
series.

11

https://ytliu0.github.io/starCharts/
https://ytliu0.github.io/starCharts/chartGCRS_min.html
https://ytliu0.github.io/starCharts/chartGCRS_min.html
https://github.com/ytliu0/ElpMpp02/ElpMpp02.html

	Implementation of ELP/MPP02
	Parameters Adjusted to Fit LLR or DE405/DE406
	Coefficients of the ELP/MPP02 Series
	Lunar and Planetary Arguments
	Position of the Moon
	Test Cases

	Truncated ELP/MPP02 Series
	Implementation
	Accuracy of Truncated Series
	Saving the Truncated Series

	JavaScript Code Generation

