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1 Introduction

It is well-known that Mercury is in 3:2 spin-orbit resonance, meaning that Prot = (2/3)Porb, where
Prot is the spin period and Porb is the orbital period. Furthermore, Mercury has a fairly high eccen-
tricity: e = 0.20563069 (see http://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html).
It is easy to show that the orbital angular velocity θ̇ is given by

θ̇ =
a2
√

1− e2
r2

Ω̄orb,

where a is the orbital semi-major axis, r is the distance from the sun and Ω̄orb = 2π/Porb is the
mean orbital angular velocity. At perihelion, r = a(1− e) and hence the orbital angular velocity
at perihelion is

θ̇ =

√
1− e2

(1− e)2
Ω̄orb = 1.55086Ω̄orb >

2π

Prot

(1)

for Mercury. As a result, the sun moves eastward relative to horizon near perihelion as seen
in Mercury’s sky. More interestingly, Mercury is approximately tidally locked over a significant
fraction of its orbit close to the perihelion, as mentioned in Foundations of Astrophysics by Ryden
and Peterson.

Figure 1: Mercur’s orbit. The red re-
gion denotes the hemisphere facing the
sun and is the day side. The black
hemisphere is the night side.

The purpose of this calculation is to visualize this ap-
proximate tidal locking. Consider two points P and Q
at Mercury’s equator. As shown in Figure 1 where Mer-
cury is at perihelion, P faces the sun directly (“subsolar
point”) and Q is at an angle π/2 to the west of P . We will
calculate the position of P and Q as a function of time
as Mercury spins and revolves around the sun, and see
how their relative angular positions with respect to the
sun change with time. Since Q is simply π/2 to the west
of P , it suffices to compute the position of P . Mercury’s
spin axis tilts about 7◦ with respect to its orbital angular
momentum. However, the calculation ignores this small
tilt.

Animations are generated to show how the positions
of P and Q relative to the sun change with time.
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2 Computation Method

Set up a coordinate system when the sun is at the origin
and x̂ points to the perihelion point. Let θ be the true
anomaly of Mercury, φ be the phase angle of point P measured from the x̂ direction and H be the
hour angle of the sun as seen from point P (see Figure 2). It follows that H = π + φ− θ. Integer
factors of 2π may be added to H and so the expression

H = φ− θ − π (2)

is also valid. This expression is adopted so that H = 0 at the configuration shown in Figure 1
with θ = 0. If Mercury were tidally locked, H would be time independent. The rate of change
of H is therefore a measure of the degree of tidal locking, and it is simply the difference of the
rotational angular velocity and orbital angular velocity:

Ḣ = φ̇− θ̇ =
2π

Prot

− 2πa2
√

1− e2
r2Porb

=
2π

Porb

(
3

2
− a2

√
1− e2
r2

)
(3)

Figure 2: Hour angle H, true anomaly
θ and phase angle φ. The sizes of Mer-
cury, sun and Mercury’s orbit are not
drawn to scale.

Assume that t = 0 is the configuration shown in Fig-
ure 1. The phase angle is simply given by

φ(t) = π + Ωrott = π +
2πt

Prot

= π +
3πt

Porb

. (4)

The true anomaly can be determined by solving Kepler’s
equation

E − e sinE = M =
2πt

Porb

, (5)

where E is the eccentric anomaly and M is the mean
anomaly. Mercury’s center position (x, y) is given by

x = a(cosE − e) , y = a
√

1− e2 sinE (6)

and θ is the argument of the complex number x + yi.
Alternatively, θ can be computed by

tan
θ

2
=

√
1 + e

1− e
tan

E

2
. (7)

The distance from the sun is r =
√
x2 + y2 = a(1 − e cosE). Substituting this equation to (3)

gives

Ḣ =
2π

Porb

[
3

2
−

√
1− e2

(1− e cosE)2

]
. (8)

So here is the recipe: for any given time t, compute the phase angle φ using (4) and solve
the Kepler equation (5) for E. Next compute Mercury’s position using (6) and calculate the true
anomaly θ. The position of P , (xP , yP ), is given by

xP = x+R cosφ , yP = y +R sinφ, (9)
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Figure 3: Left: Hour angle H of the sun as seen at point P (the magenta point in Figure 1) as a
function of time. Right: The time derivative of H as a function of time.

where R is Mercury’s radius. These quantities are sufficient to draw the configuration at time t.
The hour angle H and its time derivative can also be computed using (2) and (3) [or (8)].

It should be noted that it is actually not necessary to solve the transcendental equation (5), as
x, y, and t can be parametrized by the eccentric anomaly E, i.e. x = x(E), y = y(E), and t = t(E).
One may choose to use E as the independent variable in the calculation instead. However, if one
wants to make t uniformly spaced, which is useful if one wishes to make movies, the spacing in
E needs to be chosen appropriately. This is not too difficult for small time spacing ∆t since it
follows from (5) that

∆E ≈ 2π

(1− e cosE)Porb

∆t.

A uniform time spacing can be created approximately by using this particular ∆E. However, solv-
ing the Kepler equation numerically is rather straightforward and was adopted in our calculation.

3 Result

Choose t = 0 to be the configuration in Figure 1. Figure 3 shows H and Ḣ as a function of
time as seen from the point P (the magenta point in Figure 1). We see that there is a significant
amount of time when H remains nearly constant, an indication of approximate tidal locking. The
Ḣ curve also shows the amount of time around the perihelion where Ḣ < 0. Recall that Ḣ < 0
means the sun’s motion is eastward relative to horizon as seen in Mercury’s sky.

Data from the calculation show that Ḣ < 0 when −0.046 < t/Porb < 0.046. Since Porb = 87.969
(Earth) days, the retrograde motion lasts about 8 days. During this period, the hour angle has
changed by ∆H = −0.0194 radians. For comparison, the angular radius of the sun as seen on
Mercury at |t| < 0.046Porb is about 0.015 radians. At point P , the sun is high near the zenith.
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However, at point Q which is π/2 to the west of P (see Figure 1), the sun hovers about the horizon
during this period.

It is interesting to analyze the sun’s positions as seen from Q. The hour angle of the sun at Q,
HQ, is related to H by HQ = H − π/2. Sunrise is defined as the moment when the sun’s upper
edge touches the horizon. Since Mercury doesn’t have an atmosphere, we don’t need to correct
for atmospheric refraction as on Earth. Sunrise occurs when HQ = −π/2 − α� or H = −α�,
where α� = R�/r is the angular radius of the sun and R� = 6.955 × 108 m is the solar radius.
Calculation shows that sunrise occurs around t = −0.1Porb and the angular radius of the sun is
α� = 0.014rad = 0.8◦. At t = −0.046Porb, the sun’s center is 0.0097 radians (0.56◦) above the
horizon and the lower edge of the sun is still below the horizon. The sun then moves backward in
the sky and is now setting. At t = 0.046Porb, the sun’s center is 0.0097 radians (0.56◦) below the
horizon but the upper edge of the sun is still above the horizon. The sun rises again as Ḣ > 0.
The lower edge of the sun touches the horizon at t = 0.1Porb. Hence the whole sunrise lasts 0.2Porb

or 17.6 days as seen at Q. Although an observer at Q sees the upper edge of the sun above the
horizon during this period, observers at some points further west of Q will first see the sun rise,
but before the whole sun rises it sets and rises again later when Mercury moves further away from
the perihelion.

Figure 3 suggests that the period when H is nearly constant lasts longer than the period when
Ḣ < 0. Exactly how long it is depends on the criterion of “nearly constant.” For −0.114 <
t/Porb < 0.114, −0.03 < H < 0.03. For −0.125 < t/Porb < 0.125, −0.045 < H < 0.045. Hence for
a quarter of orbital period around perihelion, or 22 (Earth) days, the sun remains less than 2.6◦

from the zenith as seen from P . This gives us an idea of the degree of tidal locking near perihelion.
Finally, Figure 4 shows the configurations of Mercury at various times of the orbit. Two

animations have been created to show the spin and orbit motions. One animation shows the
configurations displayed in Figure 4 as a function of time. The other one shows the change
of day-night boundary as a function of time as seen in a frame corotating with Mercury. In
the animations, however, the time is shifted by 0.5Porb, i.e. t(animation) = t − 0.5Porb. So
t(animation) = 0 corresponds to Mercury at aphelion. The shift is made in order to see the
occurrence of approximate tidal locking when Mercury moves close to the perihelion. If the
animations start at Mercury at perihelion, we will miss the beginning of the approximate tidal
locking and will have to wait until Mercury completes one orbit.
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Figure 4: Mercury’s spin-orbit configuration at various times in its orbit. The times from points
A–J are t/Porb =-0.5, -0.35, -0.25, -0.125, -0.046, 0, 0.046, 0.125, 0.25, and 0.35. The magenta and
green points are the same points P and Q shown in Figure 1. Red hemisphere is Mercury’s day
side and black hemisphere is the night side. The sun’s motion relative to horizon is eastward from
points E to G. Approximate tidal locking occurs from points D to H, where the hour angle changes
by ∆H = 0.06 radians (about 5◦) only. The configurations are periodic with the synodic period
equal to 2Porb. The configurations for 0.5 < t/Porb < 1.5 can be obtained from the configurations
at time t− Porb by simply putting the magenta and green points to the opposite side of Mercury.
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