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Linear regression is an important subject in statistics. In elementary statistics courses, formulae related to
linear regression are often stated without derivation. Here I derive these formulae for students with more advanced
math background.

1 Simple Regression: One Variable

1.1 Least Square Prescription

Suppose we have a set of data points (xi, yi) (i = 1, 2, · · · , n). The goal of linear regression is to find a straight
line that best fit the data. In other words, we want to build a model

ŷi = β0 + β1xi (1)

and tune the parameters β0 and β1 so that ŷi is as close to yi as possible for all i = 1, 2, · · · , n.
Before we do the math, we need to clarify the problem. How do we judge the “closeness” of ŷi and yi for all

i? If the data points (xi, yi) do not fall exactly on a straight line, yi and ŷi is not going to be the same for all i.
The deviation of yi from ŷi is called the residual and is denoted by εi here. In other words,

yi = ŷi + εi = β0 + β1xi + εi. (2)

The least square prescription is to find β0 and β1 that minimize the sum of the square of the residuals SSE:

SSE =
n∑
i=1

ε2i =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − β0 − β1xi)2. (3)

If you are familiar with calculus, you will know that the minimization can be done by setting the derivatives of
SSE with respect to β0 and β1 to 0, i.e. ∂SSE/∂β0 = 0 and ∂SSE/∂β1 = 0. The resulting equations are1

n∑
i=1

(yi − ŷi) =

n∑
i=1

εi = 0 and

n∑
i=1

xi(yi − ŷi) =

n∑
i=1

xiεi = 0. (4)

We can combine the first and second equation to derive an alternative equation for the second equation:

n∑
i=1

εi = 0 ⇒
n∑
i=1

x̄εi = 0

Subtracting this equation from the second equation of (4) yields

n∑
i=1

(xi − x̄)εi = 0.

Equation (4) can be expressed as

n∑
i=1

(yi − ŷi) =

n∑
i=1

εi = 0 and

n∑
i=1

(xi − x̄)(yi − ŷi) =

n∑
i=1

(xi − x̄)εi = 0. (5)

If you are not familiar with calculus, I can show you a proof using algebra. I actually prefer that proof since
it is more rigorous. Before presenting the proof, let’s remind you some concepts in statistics.

1Careful students may realize that this only gaurantees that SSE is stationary but not necessarily minimum. There is also a concern
whether the resulting solution is a global minimum or a local minimum. Detail analysis (see Section 1.3) reveals that the solution in
our case is a global minimum.
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1.2 Mean, Standard Deviation and Correlation

The mean and standard deviation of a set of points {ui} are defined as

ū =
1

n

n∑
i=1

ui , SDu =

√√√√ 1

n

n∑
i=1

(ui − ū)2 . (6)

The Z score of ui is defined as

Zui =
ui − ū
SDu

. (7)

The correlation of two set of points (with equal number of elements) {xi} and {yi} is defined as

rxy = ryx =
1

n

n∑
i=1

ZxiZyi =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

SDxSDy
(8)

The Cauchy-Schwarz inequality states that for two set of real numbers {ui} and {vi},(
n∑
i=1

uivi

)2

≤

(
n∑
i=1

u2i

)(
n∑
i=1

v2i

)
and the equality holds if and only if vi = kui for all i, where k is a constant. You can find the proof of the
inequality in, e.g., Wikipedia.

It follows from the Cauchy-Schwarz inequality that the correlation |rxy| ≤ 1, with |rxy| = 1 if and only if xi
and yi fall exactly on a straight line, i.e. εi = 0 for all i. So the correlation rxy measures how tightly the points
(xi, yi) are clustered around a line.

1.3 Regression Equation

To derive the regression equation, we first rewrite SSE in equation (3) in terms of Z-scores. It follows from the
definition of Z-scores that

xi = x̄+ SDxZxi , yi = ȳ + SDyZyi

and the SSE becomes

SSE =

n∑
i=1

[ȳ + SDyZyi − β0 − β1(x̄+ SDxZxi)]
2

=
n∑
i=1

(SDyZyi − β1SDxZxi + ȳ − β0 − β1x̄)2

For simplicity, we denote β̃0 = ȳ − β0 − β1x̄. Then we have

SSE =

n∑
i=1

(SDyZyi − β1SDxZxi + β̃0)
2

= SD2
y

n∑
i=1

Z2
yi + β21SD

2
x

n∑
i=1

Z2
xi +

n∑
i=1

β̃20 − 2β1SDxSDy

n∑
i=1

ZxiZyi

+2β̃0SDy

n∑
i=1

Zyi − 2β̃0β1SDx

n∑
i=1

Zxi (9)

Recall that the Z-scores are constructed to have zero mean and unit standard deviation. It follows that

n∑
i=1

Zxi =
∑
i

Zyi = 0 ,
1

n

n∑
i=1

Z2
xi =

1

n

n∑
i=1

Z2
yi = 1
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and from the definition of correlation we have

1

n

n∑
i=1

ZxiZyi = rxy,

Thus the SSE in equation (9) can be written as

SSE = n(SD2
y + β21SD

2
x + β̃20 − 2β1rxySDxSDy)

= n[β̃20 + (SDxβ1 − rxySDy)
2 + (1− r2xy)SD2

y]

= n[(ȳ − β0 − β1x̄)2 + (SDxβ1 − rxySDy)
2] + n(1− r2xy)SD2

y (10)

Note that we have re-expressed β̃0 in terms of β0 and β1 in the last step. Remember our goal is to find β0 and β1
to minimize SSE. The quantity inside the square bracket in equation (10) is a sum of two squares and contain
the variables β0 and β1, whereas n(1− r2xy)SD2

y is a fixed quantity. Therefore, we conclude that

SSE ≥ n(1− r2xy)SD2
y

and the equality holds if and only if

ȳ − β0 − β1x̄ = 0 and SDxβ1 − rxySDy = 0.

Therefore, the values of β0 and β1 that minimize SSE is

β1 = rxy
SDy

SDx
, β0 = ȳ − β1x̄ (11)

and the minimum SSE is
SSE = n(1− r2xy)SD2

y (12)

How are equations (11) related to equations (5) derived from calculus? We are going to prove that they are
the same thing. Using equations (11) we have

n∑
i=1

εi =
n∑
i=1

(yi − ŷi)

=

n∑
i=1

(yi − β0 − β1xi)

=
n∑
i=1

(yi − ȳ + β1x̄− β1xi)

=

n∑
i=1

(yi − ȳ)− β1
n∑
i=1

(xi − x̄)

= 0

If the last step is not obvious to you, here’s a simple proof:

x̄ =
1

n

n∑
i=1

xi ⇒
n∑
i=1

xi = nx̄ =
n∑
i=1

x̄ ⇒
n∑
i=1

(xi − x̄) = 0

and similarly
n∑
i=1

(yi − ȳ) = 0.
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Now let’s look at the second equation of (5):

n∑
i=1

(xi − x̄)(yi − ŷi) =
n∑
i=1

(xi − x̄)(yi − β0 − β1xi)

=
n∑
i=1

(xi − x̄)(yi − ȳ + β1x̄− β1xi)

=
n∑
i=1

(xi − x̄)(yi − ȳ)− β1
n∑
i=1

(xi − x̄)2

From the definition of correlation and standard deviation, we have

rxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

SDxSDy
⇒

n∑
i=1

(xi − x̄)(yi − ȳ) = nrxySDxSDy

SD2
x =

1

n

n∑
i=1

(xi − x̄)2 ⇒
n∑
i=1

(xi − x̄)2 = nSD2
x

Thus,
n∑
i=1

(xi − x̄)(yi − ŷi) = nrxySDxSDy − β1nSD2
x = nSD2

x

(
rxy

SDy

SDx
− β1

)
= 0.

Therefore, we have proved that equations (5) follows from equations (11). On the other hand, equations (5) are two
linear equations for β0 and β1. We can solve for β0 and β1 from these equations, which we will do so in Section 1.7.
The result is that β0 and β1 are given by equations (11) and so the two sets of equations are equivalent.

1.4 Interpretation

I will try to give you an intuition of the meaning of equations (5) below.
We can rewrite the first equation of (5) as

ε̄ = 0. (13)

That is to say that the mean of εi vanishes. The second equation of (5) means that

n∑
i=1

(xi − x̄)εi =
n∑
i=1

(xi − x̄)(εi − ε̄) = 0 ⇒ nSDxSDεrxε = 0 ⇒ rxε = 0.

Thus the least square prescription is to find β0 and β1 to make the residuals having zero mean and zero
correlation with xi. Let’s illustrate how this can be done graphically.

Suppose we have the following data set of xi and yi:
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y

We want to fit a straight line y = β0 +β1x to the data points. We know the line has to make the resuduals having
zero mean and zero correlation with xi. First, let’s imagine choosing various values of β1 and see what the plot
y − β1x versus x look like. In general, we will have the plot similar to the one above but with different overall
slope. If we pick the right value of β1, we will see that the residual y − β1x vs x is flat:
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We know have achieved the first goal: by choosing the right value of β1, the residual y − β1x has zero correlation
with x. However, the residuals do not have zero mean. So next we want to choose β0 so that y − β0 − β1x has
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zero mean. When the right value of β0 is chosen, the residuals become this:
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We have accomplished our goal. The residuals now have zero mean and zero correlation with xi. The resulting
regression line y = β0 + β1x is the straight line that is best fit to the data points. The graph below shows the
regression line (blue), data points (black) and the residuals (red).

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−1

0

1

2

3

x

y

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

We have outlined the idea of linear regression. Next we introduce the the concept of a vector, which proves to
be very useful for regression with more than one variables.
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1.5 Vectors

An n-dimensional vector V contains n real numbers v1, v2, · · · , vn, often written in the form

V =


v1
v2
...
vn


The numbers v1, v2, · · · , vn are called the components of V . Here we adopt the convention to write vector variables
in boldface to distinguish them from numbers. It is useful to define a special vector X0 whose components are all
equal to 1. That is,

X0 =


1
1
...
1

 (14)

The scalar product of two vectors U and V is defined as

U · V = V ·U =
n∑
i=1

uivi,

where vi and ui are components of V and U . Note that the result of the scalar product of two vectors is a number,
not a vector. Two vectors U and V are said to be orthogonal if U · V = 0.

It follows from the definition that

V · V =

n∑
i=1

v2i ≥ 0,

with V · V = 0 if and only if all components of V are 0. It follows from the Cauchy-Schwarz inequality that

(U · V )2 ≤ (U ·U)(V · V )

with the equality holds if and only if U = kV for some constant k.
Now that we have introduced the basic concept of a vector, we are now ready to express the regression equations

in vector form.

1.6 Regression Equations in Vector Form

Equation (2) can be written as
Y = Ŷ + ε = β0X0 + β1X + ε. (15)

The sum of square of residuals SSE in (3) can be written as

SSE = ε · ε = (Y − Ŷ ) · (Y − Ŷ ) = (Y − β0X0 − β1X) · (Y − β0X0 − β1X) (16)

To minimize SSE, we set the derivatives of SSE with respect to β0 and β1 to 0. The resulting equations are

X0 · (Y − β0X0 − β1X) = 0 , X · (Y − β0X0 − β1X) = 0

or
X0 · ε = X · ε = 0. (17)

This is equation (4) written in vector form. We see that the least square prescription can be interpreted as finding
β0 and β1 to make the residual vector ε orthogonal to both X0 and X.
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The mean and standard deviation in (6) can be expressed as

ū =
1

n
X0 ·U , SDu =

√
1

n
(U − ūX0) · (U − ūX0) (18)

and the Z score in (7) becomes

Zu =
U − ūX0

SDu
(19)

It follows that
Zu ·Zu = n (20)

The correlation rxy in (8) is proportional to the scalar product of Zx and Zy:

rxy =
1

n
Zx ·Zy (21)

The equation rxε = 0 is equivalent to
Zx · ε = 0 (22)

We see that the equations in vector form are simpler and more elegant. We are now ready to solve the regression
equations (15) and (17) for β0 and β1.

1.7 Regression Coefficients

In this section, we are going to use the vector algebra to solve for β0 and β1 to re-derive equations (11). This is a
useful exercise because it can be easily generalized to multiple regression we will consider later.

Start with equation (15). Taking the scalar product of (15) withX0, using equations (18), (17) andX0·X0 = n,
we obtain

nȳ = nβ0 + nβ1x̄ ⇒ ȳ = β0 + β1x̄, (23)

Multiplying both sides of the above equation by X0 gives

ȳX0 = β0X0 + β1x̄X0

Subtracting the above equation from (15) gives

Y − ȳX0 = β1(X − x̄X0) + ε

It follows from equation (19) that Y − ȳX0 = SDyZy and X − x̄X0 = SDxZx. Hence we have

SDyZy = β1SDxZx + ε

Taking the scalar product with Zx and using Zx · ε = 0, we obtain

SDyZx ·Zy = β1SDxZx ·Zx

It follows from equation (21) and (20) that Zx ·Zy = nrxy and Zx ·Zx = n and so the above equation reduces to

SDyrxy = β1SDx ⇒ β1 = rxy
SDy

SDx
.

Combining the above equation with (23), we finally solve β0 and β1:

β1 = rxy
SDy

SDx
, β0 = ȳ − β1x̄ (24)

The regression line is the straight line with slope rxySDy/SDx passing through the point (x̄, ȳ).
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1.8 SST, SSM, SSE

The total sum square SST is defined as

SST =
n∑
i=1

(yi − ȳ)2 = (Y − ȳX0) · (Y − ȳX0) (25)

It follows from the definition of standard deviation [see equation (6) or (18)] that

SST = nSD2
y (26)

The sum square predicted by the linear model SSM is defined as

SSM =
n∑
i=1

(ŷi − ȳ)2 = (Ŷ − ȳX0) · (Ŷ − ȳX0) (27)

Using Ŷ = β0X0 + β1X and β0 = ȳ − β1x̄, we have

Ŷ − ȳX0 = (ȳ − β1x̄)X0 + β1X − ȳX0 = β1(X − x̄X0) = β1SDxZx, (28)

where we have used equation (19) to obtain the last equality. Combining (27), (28), (20) (24) and (26), we obtain

SSM = nβ21SD
2
x = n

(
rxy

SDy

SDx

)2

SD2
x = nr2xySD

2
y = r2xySST (29)

Next we want to prove the identity SST = SSM + SSE. To see that, we start with the identity

Y − ȳX0 = (Y − Ŷ ) + (Ŷ − ȳX0) = ε+ (Ŷ − ȳX0)

We then “square” both sides by taking the scalar product with itself:

(Y − ȳX0) · (Y − ȳX0) = [ε+ (Ŷ − ȳX0)] · [ε+ (Ŷ − ȳX0)]

The left hand side is SST , the right hand side is the sum of SSE, SSM and a cross term:

SST = ε · ε+ (Ŷ − ȳX0) · (Ŷ − ȳX0) + 2ε · (Ŷ − ȳX0)
= SSE + SSM + 2ε · (Ŷ − ȳX0)

It follows from (28) and Zx · ε = 0 that the cross term vanishes:

ε · (Ŷ − ȳX0) = β1SDxZx · ε = 0

Another way of seeing this is to note that ε is orthogonal to both X0 and X, as required by the least square
prescription (17). So ε is orthogonal to any linear combination ofX0 andX. Since Ŷ −ȳX0 is a linear combination
of X0 and X, it is orthogonal to ε.

We have just proved that
SST = SSM + SSE (30)

We have calculated above that SSM = r2xySST and SST = nSD2
y. Using the identity SST = SSM + SSE, we

obtain
SSE = SST − SSM = (1− r2xy)SST = n(1− r2xy)SD2

y.

2 Multiple Regression

Now we want to generalize the results of simple regression to multiple regression. We will first consider the case
with two variables in Section 2.1, because simple analytic expressions exist in this case and the derivation is
relatively straightforward. Then we will turn to the more general case with more than two variables in Section 2.2.
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2.1 Two Variables

Suppose we want to fit the data points {yi} with two variables {x1i} and {x2i} by a linear model

yi = ŷi + εi , i = 1, 2, · · · , n

with
ŷi = β0 + β1x1i + β2x2i.

The least square prescription is again to find β0, β1 and β2 to minimize the sum square of the residuals:

SSE =
n∑
i=1

ε2i =
n∑
i=1

(yi − ŷi)2

As in the case of simple regression, it is more convenient to rewrite the above equations in vector form as follows:

Y = Ŷ + ε = β0X0 + β1X1 + β2X2 + ε (31)

Ŷ = β0X0 + β1X1 + β2X2 (32)

SSE = ε · ε = (Y − β0X0 − β1X1 − β2X2) · (Y − β0X0 − β1X1 − β2X2) (33)

To employ the least square prescription, we set the derivatives of SSE with respect to β0, β1 and β2 to 0. The
resulting equations are

X0 · ε = X1 · ε = X2 · ε = 0. (34)

That is to say that ε is orthogonal to X0, X1 and X2. In other words, Ŷ is the vector Y projected onto the
vector space spanned by X0, X1 and X2.

For convenience, we denote Z1 and Z2 as the Z-score vectors associated with X1 and X2, respectively. That
is,

Z1 =
X1 − x̄1X0

SD1
, Z2 =

X2 − x̄2X0

SD2
, (35)

where SD1 and SD2 are the standard deviation of {x1i} and {x2i}, respectively. We see that Z1 is a linear
combination of X0 and X1; Z2 is a linear combination of X0 and X2. Since ε to orthogonal to X0, X1 and X2,
it is orthogonal to Z1 and Z2 as well:

Z1 · ε = Z2 · ε = 0. (36)

Recall that the mean of a vector U is ū = X0 ·U/n, and the correlation between U and V is ruv = Zu · Zv/n.
Thus the orthogonality conditions of ε mean that (1) ε has zero mean, ε̄ = 0, and (2) ε has zero correlation with
both X1 and X2: rε1 = rε2 = 0.

To solve the regression equations (34), we take the scalar product of equation (31) with X0, resulting in the
equation

ȳ = β0 + β1x̄1 + β2x̄2 (37)

This means that the regression line passes through the average point (x̄1, x̄2, ȳ). Multiplying equation (37) by X0

yields
ȳX0 = β0X0 + β1x̄1X0 + β2x̄2X0

Subtracting the above equation from (31) gives

Y − ȳX0 = β1(X1 − x̄1X0) + β2(X2 − x̄2X0) + ε

Using the definition of the Z score vector, we can write the above equation as

SDyZy = β1SD1Z1 + β2SD2Z2 + ε (38)
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Taking the scalar product of the above equation with Z1 gives

SDyry1 = β1SD1 + β2SD2r12, (39)

where ry1 = Zy ·Z1/n is the correlation between Y and X1, r12 = Z1 ·Z2/n is the correlation between X1 and
X2. Equation (39) can be written as

β1 = ry1
SDy

SD1
− β2

(
r12

SD2

SD1

)
= βy1 − β2β21, (40)

where βy1 = ry1SDy/SD1 is the slope in the simple regression for predicting Y from X1, and β21 = r12SD2/SD1

is the slope in the simple regression for predicting X2 from X1.
Before deriving the final expression for β1, let’s point out two things. First, if r12 = 0 (or equivalently

X1 ·X2 = 0) then β1 = βy1. That is to say that if the correlation bteween X1 and X2 is zero (orthogonal),
the slope β1 in the multiple regression is exactly the same as the slope βy1 in the simple regression for prediction
Y from X1. The addition of the X2 does not change the slope. Second, if r12 > 0 and β2 > 0, then β1 < βy1.
The slope β1 decreases if X1 and X2 are positively correlated and if the slope of X2 in the multiple regression is
positive.

Let’s go back to equation (40). If r12 6= 0, the equation of β1 involves β2. So β1 and β2 has to be solved
together. Since X1 and X2 are symmetric, the equation for β2 can be obtained by simply exchanging the index
between 1 and 2 of the β1 equation:

β2 = βy2 − β1β12, (41)

where

βy2 = ry2
SDy

SD2
and β12 = r12

SD1

SD2
. (42)

Substituting β2 from (41) into (40), we obtain

β1 = βy1 − (βy2 − β1β12)β21 = βy1 − βy2β21 + β1β12β21 (43)

Note that the product

β12β21 =

(
r12

SD1

SD2

)(
r12

SD2

SD1

)
= r212.

Thus equation (43) becomes

β1 = βy1 − βy2β21 + r212β1 ⇒ (1− r212)β1 = βy1 − βy2β21

or

β1 =
βy1 − βy2β21

1− r212
Using the expressions for βy1, βy2 and β12, we find

β1 = b1
SDy

SD1
, (44)

where

b1 =
ry1 − ry2r12

1− r212
may be interpreted as the adjusted correlation between Y and X1 taking into account the presence of X2. The
expression for β2 is obtained by exchanging the index between 1 and 2:

β2 = b2
SDy

SD2
, b2 =

ry2 − ry1r12
1− r212

.
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Gathering all the results, we conclude that the regression coefficients are given by

β1 = b1
SDy

SD1
, β2 = b2

SDy

SD1
, β0 = ȳ − β1x̄1 − β2x̄2 (45)

with

b1 =
ry1 − ry2r12

1− r212
, b2 =

ry2 − ry1r12
1− r212

(46)

In Section 1.8, we see that the SSE in simple regression is related to SD2
y by SSE = n(1 − r2xy)SD

2
y. In

multiple regression, we will show in Section 2.4 that the formula is generalized to

SSE = n2(1−R2)SD2
y,

where R is the correlation between Y and Ŷ :

R =
Zy ·Zŷ

n
.

We will defer the calculation of R to Section 2.3. In the case of multiple regression with two variables considered
here, R is given by

R =

√
r2y1 + r2y2 − 2ry1ry2r12

1− r212
(47)

2.2 More Than Two Variables

Suppose we now want to fit {yi} with p variables {x1i, x2i, · · · , xpi}. The regression equation has p+ 1 parameters
β0, β1, β2, · · · , βp. It can be written in the vector form as

Y = Ŷ + ε =

p∑
j=0

βjXj + ε (48)

Ŷ =

p∑
j=0

βjXj (49)

SSE = ε · ε =

Y − p∑
j=0

βjXj

 ·
Y − p∑

j=0

βjXj

 (50)

To minimize SSE, we set the derivatives of SSE with respect to βj (j = 0, 1, · · · , p) to 0. The resulting equations
can be written as

Xj · ε = 0 , j = 0, 1, · · · , p. (51)

This means that ε is orthogonal all X0,X1, · · · ,Xp, or equivalently, the mean of ε is 0 and the correlations
between ε and all the X variables are 0.

To find the regression coefficients, we follow the same procedures as before. First, take the scalar product of
equation (48) with X0. The result is

ȳ = β0 +

p∑
j=1

βj x̄j (52)

As before, this means that the regression line passes through the point of average. Next, we multiple the above
equation by X0:

ȳX0 = β0X0 +

p∑
j=1

βj x̄jX0
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and then subtract it from equation (48):

Y − ȳX0 =

p∑
j=1

βj(Xj − x̄jX0) + ε .

Using the definition of the Z score vector (19), we can write the above equation as

SDyZy =

p∑
j=1

βjSDjZj + ε.

Dividing both sides by SDy results in

Zy =

p∑
j=1

bjZj +
ε

SDy
, (53)

where

bj = βj
SDj

SDy
. (54)

Taking the scalar product of equation (53) with Zi (i = 0, 1, 2, · · · , p), we obtain

p∑
j=1

rijbj = ryi , i = 1, 2, · · · , p. (55)

This is a system of linear equations for b1, b2, · · · , bp. Written them out, they look like

b1 + r12b2 + r13b3 + · · ·+ r1pbp = ry1
b1r21 + b2 + r23b3 + · · ·+ r2pbp = ry2
b1r31 + b2r32 + b3 + · · ·+ r3pbp = ry3

...
...

...
b1rp1 + b2rp2 + b3rp3 + · · ·+ bp = ryp

If all of the variables Xj are uncorrelated (i.e. rij = 0 if i 6= j), the solution is bj = ryj and the slopes are
βj = ryjSDy/SDj . This is exactly the same as the slopes in simple regression for predicting Y from Xj .

There are no simple analytic expressions for bj in general, but there are several well-known procedures to
obtain the solution by successive algebraic operations, but we will not discuss the methods here.

Suppose all the b’s have been solved using one of those procedures, the slopes are given by equation (54) as

βj = bj
SDj

SDy
, j = 1, 2, · · · , p (56)

and the intercept β0 is given by equation (52) as

β0 = ȳ −
p∑
j=1

βj x̄j . (57)

Finally, we should mention that the term “linear” in linear regession refers to a model being linear in the fitting
parameters β0, β1, · · · , βp. For example, we can fit yi by the model

yi = β0 + β1xi + β2
√
xi + β3x

2
i + β4 lnxi + β5

x3i
1 + 2xi

(58)

using the technique of multiple linear regression since the model is linear in β0, β1, · · · , β5. We simply label

x1i = xi , x2i =
√
xi , x3i = x2i , x4i = lnxi , x5i =

x3i
1 + 2xi
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and equation (58) can be written in vector form as

Y = β0X0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 ,

which is equation (48) with p = 5. The key is to note that the least square prescription is to minimize SSE by
varying the paremeters β’s, not the independent variables x’s.

2.3 Correlation Between Y and Ŷ

To generalize the SST, SSM, and SSE expressions in Section 1.8 for multiple regression, we consider the quantity
R defined as the correlation between Y and Ŷ :

R =
Zy ·Zŷ

n
. (59)

We first calculate the average of Ŷ :

¯̂y =
1

n
Ŷ ·X0 =

1

n

β0X0 +

p∑
j=1

βjXj

 ·X0 = β0 +

p∑
j=1

βj x̄j = ȳ,

where we have used equation (49) for Ŷ and (52) for ȳ. From the definition of the Z score vector (19) and ¯̂y = ȳ,
we can write (59) as

R =
(Y − ȳX0) · (Ŷ − ȳX0)

nSDySDŷ

=
(Ŷ + ε− ȳX0) · (Ŷ − ȳX0)

nSDySDŷ

=
(Ŷ − ȳX0) · (Ŷ − ȳX0)

nSDySDŷ

=
SDŷ

SDy
(60)

where we have used ε ·X0 = 0 and ε · Ŷ = 0 (since Ŷ is a linear combination of X0, · · ·Xp and all are orthogonal
to ε). We have also used the definition of the standard deviation (18) to obtain the last line. Hence we have

R2 =
SD2

ŷ

SD2
y

=

n∑
i=1

(ŷi − ȳ)2

n∑
i=1

(yi − ȳ)2
, (61)

which is interpreted as the fraction of the variance of Y explained by the linear model.
To compute R, we use equation (49) for Ŷ and (57) for β0, and write

SD2
ŷ =

1

n
(Ŷ − ȳX0) · (Ŷ − ȳX0)

=
1

n

[
(β0 − ȳ)X0 +

p∑
i=1

βiXi

]
·

(β0 − ȳ)X0 +

p∑
j=1

βjXj


=

1

n

[
p∑
i=1

βi(Xi − x̄iX0)

]
·

 p∑
j=1

βj(Xj − x̄jX0)
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=
1

n

(
p∑
i=1

SDiβiZi

)
·

 p∑
j=1

SDjβjZj


=

1

n

p∑
i=1

p∑
j=1

SDiSDjβiβjZi ·Zj

=

p∑
i=1

p∑
j=1

SDiSDjβiβjrij

R2 =
SD2

ŷ

SD2
y

=

p∑
i=1

p∑
j=1

bibjrij ,

where we have used the definition of bj in equation (54). The sum can be simplified by noting that bj satisfy
equation (55), and thus we obtain

R =

√√√√ p∑
i=1

biryi (62)

When the solution of bi is obtained, R can be calculated using the above equation. In the case of multiple regression
with two variables (p = 2), b1 and b2 are given by equation (46). Plugging them into equation (62), we obtain
equation (47).

2.4 SST, SSM, SSE

As in Section 1.8, we define SST and SSM as

SST =

n∑
i=1

(yi − ȳ)2 = (Y − ȳX0) · (Y − ȳX0)

SSM =

n∑
i=1

(ŷi − ȳ)2 = (Ŷ − ȳX0) · (Ŷ − ȳX0)

It follows from the definition of standard deviation that

SST = nSD2
y (63)

and it follows from (61) that
SSM = R2SST. (64)

The identity SST = SSM + SSE still holds in muiltiple linear regression. The proof is almost exactly the same
as in Section 1.8.

We start with the identity

Y − ȳX0 = (Y − Ŷ ) + (Ŷ − ȳX0) = ε+ (Ŷ − ȳX0).

Take the scalar product with itself:

(Y − ȳX0) · (Y − ȳX0) = [ε+ (Ŷ − ȳX0)] · [ε+ (Ŷ − ȳX0)]
SST = SSE + SSM + 2ε · (Ŷ − ȳX0)

Since Ŷ − ȳX0 is a linear combination of X0,X1, · · · ,Xp and ε is orthogonal to all these vectors, ε·(Ŷ − ȳX0) = 0
and so we have

SST = SSM + SSE (65)
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