P-Value Calculators for Normal, χ^{2}, t and F Distribution

Yuk Tung Liu

2018-01-27

1 Probability Distributions and P-Values

The probability density functions (pdf's) for the four distributions are:

$$
\begin{gather*}
f_{\text {normal }}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad, x \in(-\infty, \infty) \tag{1}\\
f_{\chi^{2}}(x ; k)=\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{k / 2-1} e^{-x / 2}, x \in(0, \infty) \text { if } k=1, \text { otherwise } x \in[0, \infty) \tag{2}\\
f_{t}(x ; k)=\frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k \pi} \Gamma(k / 2)}\left(1+\frac{x^{2}}{k}\right)^{-\frac{k+1}{2}} \quad, x \in(-\infty, \infty) \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
f_{F}\left(x ; k_{1}, k_{2}\right)=\frac{1}{B\left(\frac{k_{1}}{2}, \frac{k_{2}}{2}\right)}\left(\frac{k_{1}}{k_{2}}\right)^{\frac{k_{1}}{2}} x^{\frac{k_{1}}{2}-1}\left(1+\frac{k_{1}}{k_{2}} x\right)^{-\frac{k_{1}+k_{2}}{2}}, x \in(0, \infty) \text { if } k_{1}=1, \text { otherwise } x \in[0, \infty) \tag{4}
\end{equation*}
$$

Here Γ is the gamma function and B is the beta function. I only consider the case in which the degree of freedom parameters k, k_{1} and k_{2} are positive integers, even though the functions are still well-defined when these parameters are non-integers.

The corresponding cumulative distribution functions (cdf's) are:

$$
\begin{gather*}
F_{\text {normal }}(x)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right]=1-\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right) \tag{5}\\
F_{\chi^{2}}(x ; k)=P\left(\frac{k}{2}, \frac{x}{2}\right)=1-Q\left(\frac{k}{2}, \frac{x}{2}\right) \tag{6}\\
F_{t}(x ; k)=1-\frac{1}{2} I_{\frac{k}{x^{2}+k}}\left(\frac{k}{2}, \frac{1}{2}\right) \tag{7}\\
F_{F}\left(x ; k_{1}, k_{2}\right)=I_{\frac{k_{1} x}{k_{2}+k_{1} x}}\left(\frac{k_{1}}{2}, \frac{k_{2}}{2}\right)=1-I_{\frac{k_{2}}{k_{2}+k_{1} x}}\left(\frac{k_{2}}{2}, \frac{k_{1}}{2}\right) \tag{8}
\end{gather*}
$$

Here erf is the error function defined as

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{9}
\end{equation*}
$$

and erfc is the complementary error function defined as

$$
\begin{equation*}
\operatorname{erfc}(x)=1-\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t \tag{10}
\end{equation*}
$$

The incomplete gamma functions P and Q are defined as

$$
\begin{gather*}
P(a, x) \equiv \frac{\gamma(a, x)}{\Gamma(a)} \equiv \frac{1}{\Gamma(a)} \int_{0}^{x} e^{-t} t^{a-1} d t \quad(a>0) \tag{11}\\
Q(a, x) \equiv 1-P(a, x) \equiv \frac{\Gamma(a, x)}{\Gamma(a)} \equiv \frac{1}{\Gamma(a)} \int_{x}^{\infty} e^{-t} t^{a-1} d t \quad(a>0) \tag{12}
\end{gather*}
$$

The incomplete beta function I is defined as

$$
\begin{equation*}
I_{x}(a, b) \equiv \frac{B_{x}(a, b)}{B(a, b)} \equiv \frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t \quad(a, b>0) \tag{13}
\end{equation*}
$$

For a given test statistic X following a probability distribution with $\operatorname{cdf} F(x)$, the left-tail p-value is defined as

$$
\begin{equation*}
p_{\text {left }}(x)=P(X<x)=F(x) \tag{14}
\end{equation*}
$$

and the right-tail p-value is defined as

$$
\begin{equation*}
p_{\mathrm{right}}(x)=P(X>x)=1-F(x) \equiv F_{c}(x) . \tag{15}
\end{equation*}
$$

For the normal and t distribution, the two-tails p -value is defined as

$$
\begin{equation*}
p_{2 \text { tails }}(x)=P(|X|>|x|)=2 F_{c}(|x|) \quad \text { only for normal and } \mathrm{t} \text { distribution. } \tag{16}
\end{equation*}
$$

Finally, the middle area of the two distributions is $P(-|x|<X<|x|)=1-p_{2 \text { tails }}(x)$.
As a result, the calculation of p-values boils down to the computation of the four cdf's (5)-(8), which involves the computation of the error function, incomplete gamma function and incomplete beta function. I use the algorithms described in the book Numerical Recipes to compute these functions ${ }^{11}$, which I briefly describe in the following Sections.

2 Error Function

The following approximate formula is used to compute the function:

$$
\operatorname{erf}(x)= \begin{cases}1-\tau & \text { for } x \geq 0 \tag{17}\\ \tau-1 & \text { for } x<0\end{cases}
$$

where

$$
\begin{align*}
\tau= & t \cdot \exp \left(-x^{2}-1.26551223+1.00002368 t+0.37409196 t^{2}+0.09678418 t^{3}\right. \\
& -0.18628806 t^{4}+0.27886807 t^{5}-1.13520398 t^{6}+1.48851587 t^{7} \\
& \left.-0.82215223 t^{8}+0.17087277 t^{9}\right) \tag{18}
\end{align*}
$$

[^0]and
\[

$$
\begin{equation*}
t=\frac{1}{1+0.5|x|} \tag{19}
\end{equation*}
$$

\]

The approximation has a maximal error of 1.2×10^{-7}, which is more than enough since all of our p -values are displayed only to four significant figures.

The function pnorm(z) in statFunction.js is a JavaScipt code that computes $p_{\text {right }}(z)=$ $1-F_{\text {normal }}(z)$.

3 Incomplete Gamma Functions

The incomplete gamma functions $P(k / 2, x / 2)$ or $Q(k / 2, x / 2)$ are used to compute the cdf of the χ^{2} distribution (6). Here k is a positive integer and $x \geq 0$. The computation involves calculating the gamma function $\Gamma(k / 2)$, and $\gamma(k / 2, x)$ or $\Gamma(k / 2, x)$ defined in equations (11) and (12).

The calculation of $\Gamma(k / 2)$ is relatively easy. Since k is a positive integer, $\Gamma(k / 2)$ can be computed using $\Gamma(1 / 2)=\sqrt{\pi}, \Gamma(1)=1$ and the identity $\Gamma(a)=(a-1) \Gamma(a-1)$. The result is

$$
\Gamma\left(\frac{k}{2}\right)= \begin{cases}\sqrt{\pi} & k=1 \tag{20}\\ \sqrt{\pi} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdots\left(\frac{k}{2}-1\right) & k=3,5,7,9, \cdots \\ \left(\frac{k}{2}-1\right)! & k=2,4,6,8, \cdots\end{cases}
$$

It is more convenient to work with $\ln \Gamma(k / 2)$ instead of $\Gamma(k / 2)$ to prevent floating-point overflow. The expression for $\ln \Gamma(k / 2)$ is

$$
\ln \Gamma\left(\frac{k}{2}\right)= \begin{cases}\frac{1}{2} \ln \pi & k=1 \tag{21}\\ \frac{1}{2} \ln \pi+\sum_{i=1}^{(k-1) / 2} \ln \frac{2 i-1}{2} & k=3,5,7,9, \cdots \\ \sum_{i=2}^{(k-2) / 2} \ln i & k=2,4,6,8, \cdots\end{cases}
$$

For computational efficiency, the values of $\ln \Gamma(k / 2)$ for $k \leq 200$ are saved in an array so that they need not be computed every time. For $k>200$, the Lanczos approximation is used instead:

$$
\begin{align*}
\ln \Gamma(z)= & \left(z+\frac{1}{2}\right) \ln (z+5.5)-(z+5.5)+\ln \frac{\sqrt{2 \pi}}{z} \\
& +\ln \left(c_{0}+\frac{c_{1}}{z+1}+\frac{c_{2}}{z+2}+\cdots+\frac{c_{6}}{z+6}+\epsilon\right), \tag{22}
\end{align*}
$$

where

$$
\begin{align*}
& c_{0}=1.000000000190015, c_{1}=76.18009172947146, c_{2}=-86.50532032941677, \\
& c_{3}=24.01409824083091, c_{4}=-1.231739572450155, c_{5}=1.208650973866179 \times 10^{-3}, \\
& c_{6}=-5.395239384953 \times 10^{-6} \tag{23}
\end{align*}
$$

and the magnitude of the error term is $|\epsilon|<2 \times 10^{-10}$ for any positive value of z.

The function gamnln(n) in statFunctions. js is a JavaScript code that calculates $\ln \Gamma(n / 2)$. The function $\gamma(a, x)$ has the following series expansion.

$$
\begin{equation*}
\gamma(a, x)=e^{-x} x^{a} \sum_{n=0}^{\infty} \frac{\Gamma(a)}{\Gamma(a+1+n)} x^{n}=e^{-x} x^{a} \sum_{n=0}^{\infty} \frac{x^{n}}{a(a+1)(a+2) \cdots(a+n)} . \tag{24}
\end{equation*}
$$

The function $\Gamma(a, x)$ has the following continued-fraction expansion.

$$
\begin{equation*}
\Gamma(a, x)=e^{-x} x^{a}\left[\frac{1}{x+1-a-} \frac{1 \cdot(1-a)}{x+3-a-} \frac{2 \cdot(2-a)}{x+5-a-} \cdots\right] \quad(x>0) \tag{25}
\end{equation*}
$$

The continued fraction can be computed using the modified Lentz's method (see Section 5.2 of Numerical Recipes).

In the file statFunctions.js, the function $\operatorname{gser}(\mathrm{n}, \mathrm{x})$ computes $P(n / 2, x)$ using the series (24) for $\gamma(n / 2, x)$. It is basically a JavaScript version of the function gser in Numerical Recipes (http://www.aip.de/groups/soe/local/numres/bookfpdf/f6-2.pdf). The function $\operatorname{gcf}(\mathrm{n}, \mathrm{x})$ computes $Q(n / 2, x)$ using the continued-fraction representation (25) for $\Gamma(n / 2, x)$. It is basically a JavaScript version of the function gcf in Numerical Recipes. In both functions, the infinite sums are truncated at the m th term when the m th term is smaller than eps times the sum over these m terms. The parameter eps is set to 10^{-8}.

The series expansion (24) converges rapidly for x less than about $a+1$, whereas the continuedfraction expansion (25) converges rapidly for x greater than about $a+1$. In the file statFunctions. js, the function $\operatorname{gammp}(\mathrm{n}, \mathrm{x})$ returns $P(n / 2, x)$ and $\operatorname{gammq}(\mathrm{n}, \mathrm{x})$ returns $Q(n / 2, x)$. They call gser when $x<n / 2+1$ and gcf when $x \geq n / 2+1$. These are basically the JavaScipt version of the functions gammap and gammq in Numerical Recipes.

Now that the functions for $P(n / 2, x)$ and $Q(n / 2, x)$ are available, the cdf $F_{\chi^{2}}\left(\chi^{2} ; n\right)$ can be computed easily. In statFunctions.js, the function pchisq(chi2, n, ptype) returns $p_{\text {right }}\left(\chi^{2}=\right.$ $\operatorname{chi} 2 ; n)=1-F_{\chi^{2}}(\operatorname{chi} 2 ; n)$ when ptype $=1$ and $p_{\text {left }}\left(\chi^{2}=\operatorname{chi} 2 ; n\right)=F_{\chi^{2}}(\operatorname{chi} 2 ; n)$ when ptype $=$ 2.

As a remark, the error functions can be expressed in terms of the incomplete gamma functions as follows.

$$
\begin{equation*}
\operatorname{erf}(x)=P\left(\frac{1}{2}, x^{2}\right) \quad(x \geq 0) \quad, \quad \operatorname{erfc}(x)=Q\left(\frac{1}{2}, x^{2}\right) \quad(x \geq 0) \tag{26}
\end{equation*}
$$

This should not be too surprising as it is well-known that the p-values associated with the normal distribution and the χ^{2} distribution with $k=1$ are related by

$$
\begin{equation*}
p_{2 \text { tails }}(Z=z)=p_{\text {right }}\left(\chi^{2}=z^{2} ; k=1\right) \tag{27}
\end{equation*}
$$

We can therefore use the incomplete gamma functions to calculate the error functions. However, the approximate expression (17) is still preferable because it is much simplier.

4 Incomplete Beta Function

Incomplete beta functions are used to compute the cdf for the t and F distribution (see (7) and (88)).
Aside: Comparing the two equations, one can deduce the well-known (or should be well-known) relationship between the p-values associated with the t distribution with k degrees of freedom and the F distribution with $k_{1}=1$ and $k_{2}=k$:

$$
\begin{equation*}
p_{2 \text { tails }}(T=t ; k)=p_{\text {right }}\left(F=t^{2} ; k_{1}=1, k_{2}=k\right) \tag{28}
\end{equation*}
$$

The incomplete beta function $I_{x}(a, b)$ has the following continued fraction representation.

$$
\begin{equation*}
I_{x}(a, b)=\frac{x^{a}(1-x)^{b}}{a B(a, b)}\left(\frac{1}{1+} \frac{d_{1}}{1+} \frac{d_{2}}{1+} \cdots\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{2 m+1}=-\frac{(a+m)(a+b+m) x}{(a+2 m)(a+2 m+1)} \quad, \quad d_{2 m}=\frac{m(b-m) x}{(a+2 m-1)(a+2 m)} \tag{30}
\end{equation*}
$$

This continued fraction is evaluated in the function $\operatorname{betacf}(a, b, x)$ in statFunctions.js. It is basically the JavaScript version of the function betacf in Numerical Recipes (http://www.aip. de/groups/soe/local/numres/bookfpdf/f6-4.pdf). The infinite sum is terminated at the i th term when the i th term is smaller than eps times the sum over the i terms, where eps is set to 10^{-8}.

The continued fraction (29) converges rapidly for $x<(a+1) /(a+b+2)$. The case for $x>(a+1) /(a+b+2)$ can be calculated using the symmetry relation of the beta function:

$$
\begin{equation*}
I_{x}(a, b)=1-I_{1-x}(b, a) . \tag{31}
\end{equation*}
$$

The function betai ($\mathrm{n}, \mathrm{m}, \mathrm{x}$) in statFunctions.js returns $I_{x}(n / 2, m / 2)$ for positive integers n and m. It is basically the JavaScript version of the function betai in Numerical Recipes.

The p-values associated with the t distribution are calculated in the function pt ($\mathrm{t}, \mathrm{n}, \mathrm{ptype}$) in statFunctions.js. The function returns $p_{\text {left }}(t ; n)=F_{t}(t ; n)$ when ptype $=0, p_{\text {right }}(t ; n)=$ $1-F_{t}(t ; n)$ when ptype $=1, p_{2 \text { tails }}(t ; n)=2\left[1-F_{t}(|t| ; n)\right]$ when ptype $=2$, and the middle area $=1-p_{2 \text { tails }}(t ; n)$ when ptype $=3$.

The p-values associated with the F distribution are calculated in the function pf ($\mathrm{F}, \mathrm{df} 1, \mathrm{df} 2, \mathrm{ptype}$). It returns $p_{\text {right }}(F ; \mathrm{df} 1, \mathrm{df} 2)=1-F_{F}(F ; \mathrm{df} 1, \mathrm{df} 2)$ when ptype $=1$, and $p_{\text {left }}(F ; \mathrm{df} 1, \mathrm{df} 2)=F_{F}(F ; \mathrm{df} 1, \mathrm{df} 2)$ when ptype $=2$.

5 Inverse of the CDFs

Given a test statistic X following a particular probability distribution and a significance level α, the critical value is defined as the value of x such that the associated p-value $p(x)=\alpha$. Since the p-values are related to the cdf of the distribution, computing the critical values involves calculating the inverse of the cdf. In statFunctions.js, the inverse is calculated by solving the non-linear equation $p(x)-\alpha=0$ numerically using the bisection method.

Since $p(x)$ is a monotonic function of x and ranges from 0 to 1 , it is easy to find $\left(x_{1}, x_{2}\right)$ to bracket the root. Once x_{1} and x_{2} are found, the bisection method is very robust in finding the root. The function bisection(f, x1, x2, releps, abseps) in statFunctions.js searches the root using the bisection method. The input f is a user-defined function of one variable; x1 and x 2 (with $\mathrm{x} 2>\mathrm{x} 1$) are the initial values of x_{1} and x_{2} that bracket the root; releps and abseps are parameters controlling the relative and absolute errors. Inside bisection, x1 and x2 are refined and the value of $\mathrm{x} 2-\mathrm{x} 1$ is reduced by a factor of 2 in each iteration. The function returns $x=\left(x_{1}+x_{2}\right) / 2$ if one of the following conditions is satisfied:

1. $x_{2}-x_{1}<$ abseps;
2. $|f(x)|<$ abseps, where $x=\left(x_{1}+x_{2}\right) / 2$;
3. $x_{2}-x_{1}<$ releps $\cdot x$.

When it is used to compute the inverse of the cdf's, I find the best result by setting the parameter abseps $=0$ so that the accuracy is controlled entirely by the relative error parameter releps. Since the result is only displayed to 4 significant figures in the html pages, I set releps to 10^{-6}, which is more than enough for the accuracy requirement.

In statFunctions.js, the four functions qnorm(p), qchisq($p, n, p t y p e)$, qt ($p, n, p t y p e$) and $\mathrm{qf}(\mathrm{F}, \mathrm{df} 1, \mathrm{df} 2, \mathrm{ptype})$ compute the inverse of the functions pnorm(z), pchisq(chi2,n,ptype), $\mathrm{pt}(\mathrm{t}, \mathrm{n}, \mathrm{ptype})$ and $\mathrm{pf}(\mathrm{F}, \mathrm{df} 1, \mathrm{df} 2, \mathrm{ptype})$. That is, qnorm (p) returns a value \mathbf{z} so that pnorm (z) $=p ; q \operatorname{chisq}(p, n, p t y p e)$ returns a value chi2 so that pchisq(chi2, $n, p t y p e)=p$, and so on.

6 Summary of Functions in statFunctions.js

Main functions:

- pnorm(z)

Returns the right-tail p-value $p_{\text {right }}(z)=1-F_{\text {normal }}(z)$ for the normal distribution.

- pchisq(chi2,n,ptype)

Returns p-values associated with the χ^{2} distribution: $p_{\text {right }}\left(\chi^{2}=\operatorname{chi} 2 ; n\right)=1-F_{\chi^{2}}($ chi2 $; n)$ when ptype $=1$ and $p_{\text {left }}\left(\chi^{2}=\operatorname{chi} 2 ; n\right)=F_{\chi^{2}}(\operatorname{chi} 2 ; n)$ when ptype $=2$.

- pt (t, n, ptype)

Returns p-values associated with the t distribution: $p_{\text {left }}(t ; n)=F_{t}(t ; n)$ when ptype $=0$, $p_{\text {right }}(t ; n)=1-F_{t}(t ; n)$ when ptype $=1, p_{2 \text { tails }}(t ; n)=2\left[1-F_{t}(|t| ; n)\right]$ when ptype $=2$, and the middle area $=1-p_{2 \text { tails }}(t ; n)$ when ptype $=3$.

- pf(F, df1,df2,ptype)

Returns p-values associated with the F distribution: $p_{\text {right }}(F ; \mathrm{df} 1, \mathrm{df} 2)=1-F_{F}(F ; \mathrm{df} 1, \mathrm{df} 2)$ when ptype $=1$, and $p_{\text {left }}(F ; \mathrm{df} 1, \mathrm{df} 2)=F_{F}(F ; \mathrm{df} 1, \mathrm{df} 2)$ when ptype $=2$.

- qnorm(p), qchisq(p,n,ptype), qt(p,n,ptype) and qf(F,df1, df2, ptype)

Inverse of the four functions pnorm(z), pchisq(chi2, n, ptype), pt (t, n, ptype) and pf(F, df1, df2, ptype).

Auxiliary functions

- bisection(f, $\mathrm{x} 1, \mathrm{x} 2$, releps, abseps)

Returns an estimate of the root of $f(x)=0$ from a user-supplied, one-variable function f in the interval ($\mathrm{x} 1, \mathrm{x} 2$) with the relative and absolute errors of the root set by the parameters releps and abseps.

- gamnln(n)

Returns $\ln \Gamma(n / 2)$, where n is a positive integer.

- $\operatorname{gser}(\mathrm{n}, \mathrm{x})$

Returns the incomplete gamma function $P(n / 2, x)$ evaluated by a series representation.

- $\operatorname{gcf}(\mathrm{n}, \mathrm{x})$

Returns the the incomplete gamma function $Q(n / 2, x)$ evaluated by its continued fraction representation.

- $\operatorname{gammp}(\mathrm{n}, \mathrm{x})$

Returns the incomplete gamma function $P(n / 2, x)$ by calling gser when $x<n / 2+1$ and gcf when $x \geq n / 2+1$.

- $\operatorname{gammq}(n, x)$

Returns the incomplete gamma function $Q(n / 2, x)$ by calling gser when $x<n / 2+1$ and gcf when $x \geq n / 2+1$.

- $\operatorname{betacf}(a, b, x)$

Evaluates the incomplete beta function $I_{x}(a, b)$ by its continued fraction representation.

- betai ($\mathrm{n}, \mathrm{m}, \mathrm{x}$)

Returns the incomplete beta function $I_{x}(n / 2, m / 2)$ for positive integers n and m.

[^0]: ${ }^{1}$ The book has many editions. The one I use is Numerical Recipes in Fortran 77: The Art of Scientific Computing, second edition, by Press, Teukolsky, Vetterling and Flannery. An online version of the book is available at http: //www.aip.de/groups/soe/local/numres/.

